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Forecasting influenza activity using meteorological and Google Flu Trends data
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OBJECTIVE DAS PREDICTIONS CHECKING SPATIAL PREDICTIONS

TECHNICAL APPROACH

Components of a DAS DAS Products Predicting flu in San Mateo

Performance in San Mateo county, 2013-2014

Develop a data assimilation system (DAS) to track and
forecast outbreaks using Open Source Indicators (OSI) of
epidemiological activity

Predictions and GFT data for San Francisco, 2014-2015

f — Use DAS to provide 1-week

-|1—— One-week-ahead forecasts

< GFTdata ahead forecasts for San Mateo
County, CA
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— A temporal component that sequentially assimilates time-series
GFT data and produces forecasts

— One-week-ahead flu predictions for a
given anchor show predictions and 3o
bounds bracketing the GFT data
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Percent positive flu tests (S. Mateo PH)

— A spatial model that predicts flu activity away from the anchors
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— Test case: Forecast flu activity in CA in a spatially resolved manner — — San Mateo is not tracked by GFT

The temporal component

EnKF is used with 200-member
ensembles
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— San Mateo PH department
provides a data sheet with
percentage of samples testing
positive for flu

— Data: Use Google Flu Trends (GFT) available at 11 CA cities as data
from a “partially observed epidemic” — Consists of an ensemble Kalman filter (EnKF) driving a SIR —
model of flu
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Data assimilation starts 10 weeks before
the start of the flu season
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Weekly cases per 100,000 population

— Use meteorological data to spatially model flu activity at locations
not tracked by GFT

2000 4000 6000 8000 10000 12000 14000

2000

— Estimates the number of susceptible and infectious people — Forecasting starts in November

— Tested with nowcast and an o

— The spatial model is trained on 2011-2013 = . r l

Valid . blic health (PH) d — Also estimates the mean infectious period and a time-dependent - forecasts ¢ Lo
— Validate against public health (PH) data reproductive number GFT and meteorological data ¢ 2 - 102014-10-19 ‘5 = _ Tested on 2013-2014 flu season
— Assimilation of GFT data produces a “calibrated” SIR model — Together, the DAS produces maps of flu . for S
(after sufficient data has been ingested) activity orecasts and data for San
Francisco, 2014-2015 flu season.
— Forecasts using the calibrated model simply means running the —  Can be nowcasts or forecasts Error bars are 3c bounds
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searches on SYMbtoms. cures 2tc J é‘z\ﬂf} | ] % — Open-Source indicators (OSl) of disease outbreaks, such as Google
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— These online OSI are timely and collected by many organizations o _ Ti /{\i/ “1\ ; (temperature and humidity for flu) and the availability of high-
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— Meteorology can also be a leading indicator of many diseases k=0 (=0 - — The data streams being used are timely and easily available
— Rains precede mosquito-borne diseases, low humidity helps flu Predictions for Southern California Predictions for San Francisco — Preliminary tests and comparisons against public health data show
[Shaman et al, 2010] — (af,, gl)) are interpolated from i, i ¢ A, to other locations using Bay Area

: that the DAS can be sufficiently accurate to be useful in practice
kernel smoothing

— Further, meteorological data is easily available at high spatiotemporal

resolutions (as reanalysis data products) — This leads to a “mean model” MM(t) that can provide a prior
prediction based solely on meteorology, i.e. without GFT data

CHECKING TEMPORAL PREDICTIONS

— Combining OSI and meteorological data could thus be used to

forecast flu Acknowledgements

Relative error in predictions, flu year 2014-2015 (Error/3*sigma) in predictions, flu year 2014-2015
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— In [Shaman et al, 2013], the authors developed an ensemble
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— Forecasts should also contain some measure of predictive ’
uncertainty e.g., confidence bounds — Temporal predictive skill of the DAS was tested at the anchors . : : _
— This provides a spatial model, or a means or transferring For additional information, please contact:
— Using nowcasts and forecasts at the anchors, the DAS should information from the anchors to any other location — 1-week-ahead forecasts within 10% of GFT in the January — March period
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(spatially) predict flu activity at locations not directly tracked by GFT (2014-2015) flu season; 2-week-ahead forecasts are within 20% error
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— High-res meteorological data and the dependence of disease activity on — The 30 bounds bracket the prediction error during the same period

them could be used to construct a spatial model, or parameterization
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